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1. Answer any five questions : 2×5=10

(a) Define least upper bound of a bounded set and obtain it for the set

 1 2 3, , ,...... ,.....
2 3 4 1

nA
n

 

(b) Define point of accumulation of a set and find all the points of accumulation of

the set  1 1 / , 1,2,3,.....E m n
m n

   .

(c) Prove that if A and B are two closed sets, then A B  and A B  are both closed

sets.

P.T.O.



(d) Show that  3 1
2

n
n

  is a bounded sequence.

(e) Prove that every convergent sequence is bounded. Is the converse true? Justify.

(f) Prove that the Series  1

1
1n n n



   converges.

(g) If 
1

n
n

a



  is a convergent series, then prove that lim 0nan  .

(h) Define compact set with an example.

2. Answer any four questions : 5×4=20

(a) Define countability of a set. Show that the set of all real numbers is not countable.

(b) State and prove Archimedean property of real numbers.

(c) If a set S is open, then prove that its complement is a closed set. Is the converse

true? Justify.

(d) Define Cauchy Sequence. Prove that the sequence  2n  is not a Cauchy

Sequence.

(e) Prove that every bounded sequence has a convergent subsequence.

(f) Prove that 1 11 .......
2! 4! 6!
     converges.

3. Answer any three questions : 10×3=30

(a) What do you mean by convergence, absolute convergence and conditional

convergence of a series of real numbers? Prove that absolutely convergence imply

convergence. Classify as to divergent, conditionally convergent or absolutely of the

following series :

(i)
1 1 11 .....
1! 2! 3!

   

P.T.O.

(   2   )



(ii)
1 1 11 .....
3 5 7

   

(iii)
1 2 3 4 .....
2 3 4 5
    3+1+6

(b) If a sequence  nx  of real numbers is monotonic increasing and bounded above,

then prove that it converges to its exact upper bound. Prove that the sequence

 11
n

n
 

 
 

 is monotonic increasing and bounded above. 5+5

(c) (i) State and prove Bolzano-Weierstrass theorem for sequences.

(ii) Using Cauchy’s general principle of convergence prove that  nx , where

  11 1 1 11 ..... 1 ·
2 3 4

n

nx
n

       , is a convergent sequence. 5+5

(d) (i) State and prove Heine-Borel theorem. Give an illustration which justify

Heine-Borel theorem.

(ii) State and prove density property of real numbers. 4+3+3

(e) (i) Examine if the following series converge :

(i)  10
1

1
10 2n

n
n






       (ii) 

1

1
2

n

n
n






        (iii)  

1

1log 1
n

n







(ii) Given 1 20 x x  . If each 1 2

2
n n

n

x x
x   ,

then prove that    1 2
1 2
3nx x x   as n  . 6+4

__________

(   3   )
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1. Answer any five questions : 2×5=10

(a) What do you mean by the indicial equation?

(b) What is the phase plane?

(c) If 1 2, ,....... mf f f  are solution of mth order linear homogeneous differential

equation, then show that 1 1 2 2 ..... m mc f c f c f    is also a solution of this equation.

(d) Transform 
3

3
3 0

d y
x y

dx
   into the differential equation with constant co-

efficients.

P.T.O.



(e) Explain Wronskian and its properties.

(f) Define a space curve and its tangent.

(g) Evaluate 
2

2
d AA dt
dt

 .

(h) Evaluate : 2
1 4

1
xxe

D 
 where dD

dx
 .

2. Answer any four questions : 5×4=20

(a) Solve 
 2

2
2

log sin log 1
3

z zd y dy
z z y

dz zdz


   .

(b) Solve the following initial value problem by using the method of undetermined co-

efficients    
2

2
2 8 15 9 , 0 5, 0 10xd y dy

y xe y y
dxdx

     .

(c) Suppose 2 3 2 ˆˆ ˆ2A x yzi xz j xz k    and 2 ˆˆ ˆ2B zi yj x k   .

Find  
2

A B
x y
    at (1, 0, –2).

(d) Develop the method of variation of parameter in connection with the general

second order linear differential equation with variable coefficients

       
2

0 1 22

d y dy
a x a x a x y F x

dxdx
   .

(e) Solve the initial value problem : 2 7 , 3 2
dydx x y x y

dt dt
     ;  0 9x   and

y(0) = –1.

(f) Solve :  2 2 32 cos 2x xD y x e e x   .

P.T.O.

(   2   )



3. Answer any three questions : 10×3=30

(a) (i) Find the solution of the equation 
2

2 2d x x
dt

  , which satisfies the conditions

3dx
dt

  when t = 1 and x = 2 when t = –1. 8

(ii) Define the stable equilibrium. 2

(b) (i) Find the power series solution in power of x of the following differential

equation  
2

23 2 2 0
d y dy

x x y
dxdx

    . 8

(ii) State Lipschitz condition for a function f(x, y) on D. 2

(c) (i) Find the equation of the tangent plane to the surface 2 2 32 3 6x xy z    at

the point P (1, 2, 1). 5

(ii) Find the work done in moving a particle by the force field

 2 ˆˆ ˆ3 2F x i xz y j zk     along the curve defined by

2 22 , , 4x t y t z t t     from t = 0 to 1. 5

(d) (i) Given that 2xy e  is a solution of    
2

22 1 4 1 4 0
d y dy

x x y
dxdx

     , find

the linearly independent solution by reducing the order. Write the general

solution. 7

(ii) Write down the solution of 
4 3 2

4 3 23 2 2 12 0
d y d y d y dy

y
dxdx dx dx

     . 3

(e) (i) Find the power series solution of 
2

2
2 0

d y dy
x x y

dxdx
    in powers of  1x  .

6

(ii) Solve 
4

4 cos (4 )sin (3 )
d y

y h x h x
dx

  . 4

___________

(   3   )


