
(d) Show that $\left\{\frac{3 n+1}{n+2}\right\}$ is a bounded sequence.
(e) Prove that every convergent sequence is bounded. Is the converse true? Justify.
(f) Prove that the Series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges.
(g) If $\sum_{n=1}^{\infty} a_{n}$ is a convergent series, then prove that $\lim _{n \rightarrow \infty} a_{n}=0$.
(h) Define compact set with an example.
2. Answer any four questions :
(a) Define countability of a set. Show that the set of all real numbers is not countable.
(b) State and prove Archimedean property of real numbers.
(c) If a set S is open, then prove that its complement is a closed set. Is the converse true? Justify.
(d) Define Cauchy Sequence. Prove that the sequence $\left\{n^{2}\right\}$ is not a Cauchy Sequence.
(e) Prove that every bounded sequence has a convergent subsequence.
(f) Prove that $1+\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+\ldots \ldots$. converges.
3. Answer any three questions :
(a) What do you mean by convergence, absolute convergence and conditional convergence of a series of real numbers? Prove that absolutely convergence imply convergence. Classify as to divergent, conditionally convergent or absolutely of the following series :
(i) $1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\ldots$.
(ii) $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots .$.
(iii) $\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\ldots .$.
(b) If a sequence $\left\{x_{n}\right\}$ of real numbers is monotonic increasing and bounded above, then prove that it converges to its exact upper bound. Prove that the sequence $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}$ is monotonic increasing and bounded above.
(c) (i) State and prove Bolzano-Weierstrass theorem for sequences.
(ii) Using Cauchy's general principle of convergence prove that $\left\{x_{n}\right\}$, where $x_{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots . .+(-1)^{n-1} \cdot \frac{1}{n}$, is a convergent sequence. $5+5$
(d) (i) State and prove Heine-Borel theorem. Give an illustration which justify Heine-Borel theorem.
(ii) State and prove density property of real numbers.
(e) (i) Examine if the following series converge :
(i) $\sum_{n=1}^{\infty} \frac{n+1}{10^{10}(n+2)}$
(ii) $\sum_{n=1}^{\infty} \frac{n+1}{n+2}$
(iii) $\sum_{n=1}^{\infty} \log \left(1+\frac{1}{n}\right)$
(ii) Given $0<x_{1}<x_{2}$. If each $x_{n}=\frac{x_{n-1}+x_{n-2}}{2}$, then prove that $\left\{x_{n}\right\} \rightarrow \frac{1}{3}\left(x_{1}+2 x_{2}\right)$ as $n \rightarrow \infty$. 6+4

(e) Explain Wronskian and its properties.
(f) Define a space curve and its tangent.
(g) Evaluate $\int \bar{A} \times \frac{d^{2} \bar{A}}{d t^{2}} d t$.
(h) Evaluate : $\frac{1}{D^{2}-1} 4 x e^{x}$ where $D \equiv \frac{d}{d x}$.
2. Answer any four questions :
(a) Solve $z^{2} \frac{d^{2} y}{d z^{2}}-3 z \frac{d y}{d z}+y=\frac{\log z \sin (\log z)+1}{z}$.
(b) Solve the following initial value problem by using the method of undetermined co-
efficients $\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+15 y=9 x e^{2 x}, y(0)=5, y^{\prime}(0)=10$.
(c) Suppose $\bar{A}=x^{2} y z \hat{i}-2 x z^{3} \hat{j}+x z^{2} \hat{k}$ and $\bar{B}=2 z \hat{i}+y \hat{j}-x^{2} \hat{k}$.

Find $\frac{\partial^{2}}{\partial x \partial y}(\bar{A} \times \bar{B})$ at $(1,0,-2)$.
(d) Develop the method of variation of parameter in connection with the general second order linear differential equation with variable coefficients

$$
a_{0}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{2}(x) y=F(x) .
$$

(e) Solve the initial value problem : $\frac{d x}{d t}=-2 x+7 y, \frac{d y}{d t}=3 x+2 y ; x(0)=9$ and $y(0)=-1$.
(f) Solve : $\left(D^{2}+2\right) y=x^{2} e^{3 x}+e^{x} \cos 2 x$.
3. Answer any three questions :
(a) (i) Find the solution of the equation $\frac{d^{2} x}{d t^{2}}-x=2$, which satisfies the conditions $\frac{d x}{d t}=3$ when $t=1$ and $x=2$ when $t=-1$.
(ii) Define the stable equilibrium.
(b) (i) Find the power series solution in power of x of the following differential equation $3 x \frac{d^{2} y}{d x^{2}}-(x-2) \frac{d y}{d x}-2 y=0$.
(ii) State Lipschitz condition for a function $f(x, y)$ on D.
(c) (i) Find the equation of the tangent plane to the surface $x^{2}+2 x y^{2}-3 z^{3}=6$ at the point $P(1,2,1)$.
(ii) Find the work done in moving a particle by the force field $\bar{F}=3 x^{2} \hat{i}+(2 x z-y) \hat{j}+z \hat{k}$ along the curve defined by $x=2 t^{2}, y=t, z=4 t^{2}-t$ from $t=0$ to 1.
(d) (i) Given that $y=e^{2 x}$ is a solution of $(2 x+1) \frac{d^{2} y}{d x^{2}}-4(x+1) \frac{d y}{d x}+4 y=0$, find the linearly independent solution by reducing the order. Write the general solution.
(ii) Write down the solution of $\frac{d^{4} y}{d x^{4}}-3 \frac{d^{3} y}{d x^{3}}-2 \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+12 y=0$.
(e) (i) Find the power series solution of $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$ in powers of $(x-1)$.
(ii) Solve $\frac{d^{4} y}{d x^{4}}+y=\cos h(4 x) \sin h(3 x)$.

